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RL deconvolution algorithm and subsequently extended it to  
multiple-view geometry, yielding  
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where ψ r(ξ) denotes the deconvolved image at iteration r and 
φv(xv) denotes the input views, both as functions of their respec-
tive pixel locations ξ and xv, whereas P(xv|ξ) denotes the indi-
vidual PSFs (Supplementary Note 1). Equation (1) denotes a 
classical RL update step for one view; equation (2) illustrates 
the combination of all views into one update of the deconvolved 
image (Supplementary Video 1). In contrast to the maximum-
likelihood (ML) EM5,13 that combines RL updates by addition, 
equation (2) suggests a multiplicative combination. We proved 
that equation (2), just as the ML-EM5,13 algorithm, converges 
to the ML solution (Supplementary Note 2). The ML solution 
is not necessarily the correct solution if disturbances such as 
noise or misalignments are present in the input images (Fig. 2).  
Importantly, previous extensions to multiple views5–10 assume 
individual views to be independent observations (Supplementary 
Fig. 2). Assuming independence between two views implies 
that by observing one view, nothing can be learned about the 
other view. We showed that this independence assumption is not 
required to derive equation (2) (Supplementary Note 3). Our  
solution represents, to our knowledge, the first complete  
derivation of RL multiview deconvolution based on probability 
theory and Bayes’ theorem.

As we do not need to consider views to be independent, we 
next asked whether the conditional probabilities describing the 
relationship between two views can be modeled and used to 
improve convergence behavior (Supplementary Figs. 1 and 3 and 
Supplementary Notes 3 and 4). If we assume that a single pho-
ton is observed in the first view, the PSF of this view and Bayes’ 
theorem can be used to assign a probability to every location 
in the deconvolved image having emitted this photon (Fig. 1b).  
On the basis of this probability distribution, the PSF of the second 
view directly yields the probability distribution describing where 
to expect a corresponding observation for the same fluorophore 
in the second view (Fig. 1b). Thus, we argue that it is possible  
to compute an approximate image (‘virtual’ view) of one view 
from another view provided that the PSFs of both views are 
known (Fig. 1c).

We used these virtual views to perform intermediate  
update steps at no additional computational cost, decreasing 
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Light-sheet fluorescence microscopy is able to image large 
specimens with high resolution by capturing the samples from 
multiple angles. multiview deconvolution can substantially 
improve the resolution and contrast of the images, but its 
application has been limited owing to the large size of the data 
sets. here we present a bayesian-based derivation of multiview 
deconvolution that drastically improves the convergence time, 
and we provide a fast implementation using graphics hardware.

Modern light-sheet microscopes1–3 acquire images of large, 
developing specimens with high temporal and spatial reso-
lution typically by imaging them from multiple directions  
(Fig. 1a). Deconvolution uses knowledge about the optical system  
to increase spatial resolution and contrast after acquisition. 
An advantage unique to light-sheet microscopy, particularly 
the selective-plane illumination microscopy (SPIM) variant, is  
the ability to observe the same location in the specimen from 
multiple angles, which renders the ill-posed problem of decon-
volution more tractable4–10.

Richardson-Lucy (RL) deconvolution11,12 (Supplementary 
Note 1) is a Bayesian-based derivation resulting in an iterative 
expectation-maximization (EM) algorithm5,13 that is often cho-
sen for its simplicity and performance. Multiview deconvolution 
has previously been derived using the EM framework5,9,10; how-
ever, the convergence time of the algorithm remains orders of 
magnitude longer than the time required to record the data. We 
addressed this problem by deriving an optimized formulation of 
Bayesian-based deconvolution for multiple-view geometry that 
explicitly incorporates conditional probabilities between the 
views (Fig. 1b,c and Supplementary Fig. 1) and combining it 
with ordered subsets EM (OSEM)6 (Fig. 1d and Supplementary 
Fig. 2), achieving substantially faster convergence (Fig. 1d–f).

Bayesian-based deconvolution models images and point spread 
functions (PSFs) as probability distributions. The goal is to estimate 
the most probable underlying distribution (deconvolved image) 
that best explains all observed distributions (views) given their 
conditional probabilities (PSFs). We first rederived the original  
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the computational effort approximately twofold (Fig. 1d and 
Supplementary Note 4). The multiplicative combination (equa-
tion (2)) directly suggests a sequential approach, wherein each RL 
update (equation (1)) is directly applied to ψ r(ξ) (Supplementary 
Fig. 2 and Supplementary Note 5). This sequential scheme is 
equivalent to the OSEM6 algorithm and results in a 13-fold 
decrease in convergence time. This gain increases linearly with the 
number of views6 (Fig. 1d and Supplementary Fig. 4). To further 
reduce convergence time, we introduced ad hoc simplifications 
(optimizations I and II) for the estimation of conditional probabil-
ities that achieve up to 40-fold improvement compared to decon-
volution methods that assume view independence (Fig. 1d–f,  
Supplementary Figs. 4 and 5 and Supplementary Notes 6 and 7).  
The new algorithm also performs well in the presence of noise 
and imperfect PSFs (Supplementary Figs. 6–8). If the input views 
show a very low signal-to-noise ratio (SNR), atypical for SPIM, 
the speedup is preserved, but the quality of the deconvolved image 
is reduced. Our Bayesian-based derivation does not assume a 
specific noise model, but it is in practice robust with respect to  
Poisson noise, which is the dominating source of noise in  
light-sheet microscopy acquisitions.

We compared the performance of our method with that of  
previously published multiview deconvolution algorithms5–10 in 
terms of convergence behavior and run time on the central process-
ing unit (CPU) (Figs. 1e,f and 2d and Supplementary Figs. 4b  
and 9a,b). For typical SPIM multiview scenarios consisting of 
around seven views with a high SNR, our method requires seven-
fold fewer iterations and is at least threefold faster than OSEM6, 
scaled gradient projection (SGP)8 and maximum a posteriori 

with Gaussian noise (MAPG)7. At the same time our optimiza-
tion is able to improve the image quality of real and simulated 
data sets compared to MAPG7 (Fig. 2e,f and Supplementary 
Fig. 9c–h). A further speedup of threefold and reduced mem-
ory consumption is achieved by using our CUDA (Compute 
Unified Device Architecture) implementation (Supplementary 
Fig. 10g). Moreover, our approach is capable of dealing with 
partially overlapping acquisitions typical in multiview imaging 
(Supplementary Fig. 10 and Online Methods).

In order to evaluate our algorithm on realistic three-dimensional  
(3D) multiview image data, we simulated a ground-truth data set 
resembling a biological specimen (Fig. 2a). We next simulated 
image acquisition in a SPIM microscope from multiple angles by 
applying signal attenuation across the field of view, convolving  
the data with the PSF of the microscope, simulating the  
multiview optical sectioning and using a Poisson process to generate  
the final pixel intensities (Fig. 2b and Online Methods). We  
deconvolved the generated multiview data (Fig. 2c) using our 
algorithm with and without regularization (regularization adds 
smoothness constraints to the deconvolution process to achieve a 
more plausible solution for this ill-posed problem) and compared 
the results to the content-based fusion14 and the MAPG7 decon-
volution (Fig. 2d–f). Our algorithm reached optimal reconstruc-
tion quality faster (Fig. 2d) and introduced fewer artifacts than 
MAPG7 (Fig. 2e,f and Supplementary Videos 2 and 3). Tikhonov 
regularization15 was required to converge to a reasonable result 
under realistic imaging conditions (Fig. 2d–f).

We applied our deconvolution approach to multiview SPIM 
acquisitions of Drosophila  melanogaster and Caenorhabditis  
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elegans embryos (Fig. 3a–e). We achieved a substantial increase 
in contrast as well as resolution with respect to the content-based 
fusion14 (Fig. 3b and Supplementary Fig. 11); only a few iterations 
were required and computation times were typically in the range of 
a few minutes per multiview acquisition (Supplementary Table 1).  
We applied the deconvolution to a four-view acquisition of a fixed 
C.  elegans in larval stage 1 (L1) expressing GFP-tagged lamin  
(LMN-1–GFP) labeling the nuclear lamina and stained for  
DNA with Hoechst (Fig. 3f,g). Multiview deconvolution  
improved contrast and resolution compared to the input data 
and enabled unambiguous segmentation of nuclei in problem-
atic areas of the nervous system16 (Supplementary Videos 4–7). 
The algorithm dramatically improved multiview data acquired  
with OpenSPIM17 (Supplementary Fig. 12), and its effi-
ciency makes it applicable to spatially large multiview data sets 
(Supplementary Fig. 13) and to processing of long-term time 
lapses from the Zeiss Lightsheet Z.1 (Supplementary Videos 8–11  
and Supplementary Table 1).

Multiview deconvolution increases contrast in SPIM data after 
acquisition, complementary to hardware-based contrast enhance-
ment achieved by digital scanned laser light-sheet microscopy 
(DSLM-SI)18 (Supplementary Fig. 14). Moreover, multiview 
deconvolution produced superior results when comparing an 
acquisition of the same sample with SPIM and a two-photon  
microscope (Supplementary Fig. 15). Finally, the benefits 
of the multiview deconvolution approach are not limited to 
SPIM, as illustrated by the deconvolved multiview spinning disc 

confocal microscope acquisition of a C.  elegans in L1 stage14 
(Supplementary Fig. 16).

A major obstacle for widespread application of deconvolution 
approaches to multiview light-sheet microscopy data is the lack of 
usable and scalable multiview deconvolution software. Therefore, 
we implemented our fast converging algorithm as a Fiji19 plug-in 
taking advantage of ImgLib2 (ref. 20) and GPU processing (http://
fiji.sc/Multi-View_Deconvolution). The only free parameter of 
the method that must be chosen by the user is the number of 
iterations for the deconvolution process. We facilitate this choice 
by providing a debug mode allowing the user to inspect all inter-
mediate iterations and identify optimal trade-off between qual-
ity and computation time. Our Fiji19 implementation synergizes 
with other related plug-ins and provides an integrated solution 
for the processing of multiview light-sheet microscopy data of 
arbitrary size.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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figure � | Application to biological data. (a) Comparison of reconstruction results using content-based fusion14 (top row) and multiview deconvolution 
(bottom row) on a four-cell–stage C. elegans embryo expressing a PH domain–GFP fusion marking the membranes. Dotted lines mark plots shown  
in b; white arrowheads mark PSFs of a fluorescent bead before and after deconvolution. (b) Line plot through the volume along the rotation axis  
(yz, contrast locally normalized). This orientation typically shows the lowest resolution of a fused data set in light-sheet acquisitions, as all input views 
are oriented axially (supplementary fig. ��). SNR is substantially enhanced; arrowheads mark points illustrating increased resolution. (c,d) Cut planes 
through a blastoderm-stage Drosophila embryo expressing His-YFP in all cells. (e) Magnified view on parts of the Drosophila embryo. The left panel is a 
view in lateral orientation of one of the input views; the right panel shows a view along the rotation axis characterized by the lowest resolution. (f,g) 
Comparison of deconvolution and input data of a fixed L1 C. elegans larva expressing LMN-1–GFP (green) and stained with Hoechst (magenta). (f) Single 
slice through the deconvolved data set; arrowheads mark four locations of transversal cuts shown below. The cuts compare two orthogonal input views 
(0°, 90°) with the deconvolved data. No input view offers high resolution in this orientation approximately along the rotation axis. (g) The left box in 
the first row shows a random slice of a view in axial orientation (worst resolution). The second row shows a view in lateral orientation (best resolution). 
The third row shows the corresponding deconvolved image. The right boxes each show a slice through the nervous system. The alignment of the C. 
elegans L1 data set was refined using nuclear positions (Online Methods). The C. elegans embryo (a,b) and the Drosophila embryo (d,e) are each one time 
point of a time series (none of the other time points is used in this paper). The C. elegans L1 larva (f,g) is an individual acquisition of one fixed sample.

http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.2929 nature methods

onLine methods
Derivations and proof. The efficient Bayesian-based multi-
view deconvolution is an extension of the classical Richardson-
Lucy11,12 deconvolution, which is based on probability theory and  
Bayes’ theorem. We rederive the single-view Bayesian-based 
deconvolution and extend it to multiple views (Supplementary 
Note 1), and prove the convergence of our new derivation to 
the maximum-likelihood solution (Supplementary Note 2). 
We show that the Bayesian-based multiview deconvolution 
can be derived without assuming independence of the input 
views (Supplementary Note 3) and that the conditional prob-
abilities can subsequently be incorporated into the derivation 
using ‘virtual’ views (Fig. 1c, Supplementary Figs. 1 and 2 and 
Supplementary Note 4). Finally, we discuss further optimizations 
(Supplementary Notes 5 and 6) and perform extensive bench-
marks and comparisons (Supplementary Figs. 4–9 and 17 and 
Supplementary Note 7).

Multiview registration and PSF estimation. Prerequisite for  
multiview deconvolution of light-sheet microscopy data are  
precisely aligned multiview data sets and estimates of point spread 
functions (PSFs) for all views. We exploit the fact that for the 
purposes of registration we include subresolution fluorescent 
beads into the rigid agarose medium in which the specimen is 
embedded. The beads are initially used for multiview registration 
of the SPIM data14 and subsequently to extract the PSF for each 
view for the purposes of multiview deconvolution. We average 
the intensity of PSFs for each view for all the beads that were 
identified as corresponding during registration, yielding a precise 
measure of the PSF for each view under the specific experimental 
condition. This synergy of registration and deconvolution ensures 
realistic representation of PSFs under any imaging condition. 
Alternatively, simulated PSFs or PSFs measured by other means 
can be provided as inputs to the deconvolution algorithm.

Multiview deconvolution and other optical sectioning micros­
copy. In order to better characterize the gain in resolution and 
contrast of multiview deconvolution, several experiments and 
comparisons were performed. We compared a SPIM multiview 
acquisition to a single-view two-photon microscopy acquisition of 
the same sample (Supplementary Fig. 15). The fixed Drosophila 
embryo stained with Sytox green was embedded in agarose and 
first imaged using a 20×/0.5-NA (numerical aperture) water-
dipping objective in the Zeiss SPIM prototype. After acquisition 
the agarose was cut, and the same sample was imaged using a 
two-photon microscope and a 20×/0.8-NA air objective. The 
data sets were aligned using the fluorescent beads visible in both  
the SPIM and two-photon acquisitions. The SPIM data set was 
reconstructed using content-based fusion14 and multiview decon-
volution and was compared to the two-photon stack as well as  
the Richardson-Lucy single-view deconvolution11,12 of the  
two-photon acquisition (Supplementary Fig. 15). Although two-
photon microscopy is able to detect more photons in the center 
of the embryo, the multiview deconvolution shows substantially 
better resolution and coverage of the sample.

Multiview deconvolution can principally be applied to any 
optical sectioning microscope that is capable of sample rota-
tion (Supplementary Fig. 16). We acquired a multiview data  

set using spinning disc confocal microscopy and a self-built  
rotational device14. We compared the quality of one individ-
ual input stack with the multiview deconvolution and the RL  
single-view deconvolution11,12 of this stack. Although one view 
completely covers the sample, it is obvious that the multiview 
deconvolution clearly improves the resolution compared to the 
single-view deconvolution (Supplementary Fig. 16d).

Gain in resolution due to multiview deconvolution. To be able 
to quantify the gain in resolution, we analyzed images of fluores-
cent beads embedded in agarose (Supplementary Fig. 11). We 
extracted all corresponding fluorescent beads from seven input 
views, after multiview fusion14 and after multiview deconvolu-
tion. Comparing the input views and the multiview fusion, it 
becomes apparent that the multiview fusion14 reduces resolution 
in all dimensions except compared to the axial resolution of a 
single input view. On the other hand, the multiview deconvolution 
increases resolution in all dimensions compared to the multiview 
fused data. The multiview deconvolution achieves almost iso-
tropic resolution in all dimensions comparable to the resolution 
of each input stack in the lateral direction.

Partially overlapping multiview data sets. In practical multi-
view deconvolution scenarios, where large samples are acquired, 
individual views often cover only some parts of the sample  
(Fig. 3c–e and Supplementary Figs. 9 and 12–15). The sequential 
update strategy (OSEM6) intrinsically supports partially overlap-
ping data sets as it allows updating only parts of the deconvolved 
image using subsets of the input data. It is, however, necessary to 
achieve a balanced update for all pixels of the deconvolved image 
(Supplementary Fig. 10a–f).

Therefore, a weight image wv(ξ) is computed for each input 
view. It consists of a blending function returning 1 in central parts 
of a view; close to the boundaries, weights are decreasing from 
1 to 0 following a cosine function and thus avoiding artifacts at 
image borders. By default, the sum of all weights for each pixel 
over all views is normalized, Σv ∈Vwv(ξ) = 1, providing a balanced 
update of all pixels (Supplementary Fig. 10a,b). For each sequen-
tial update v ∈V contributed by one view v, the weight at every 
pixel location defines the fraction of the Richardson-Lucy11,12 
update that is applied to the deconvolved image  

  
y x y x x xr r

v
vw f+ =1( ) ( ) ( ) ( )RL  (3)

 Normalizing the sum of weights to 1 is, however, equivalent  
to not using OSEM6 in terms of performance (Supplementary 
Fig. 10f). In order to benefit from the OSEM6 speedup, the weights 
have to be summed to values greater than 1. At the same time, 
individual weights for each view must be smaller or equal to 1  
as the Bayesian-based iterative deconvolution becomes unstable 
otherwise. The OSEM6 speedup that can be achieved is therefore 
dependent on the coverage of the deconvolved image by input 
views (Supplementary Fig. 10b–f). Choosing this number too 
high will lead to an uneven deconvolution, i.e., some parts of the 
sample will be more deconvolved than others (Supplementary  
Fig. 10b–d). In most cases the minimal number of overlapping 
views (Supplementary Fig. 10c) will provide a reasonable trade-off 
between speedup and uniformity. Some areas close to the boundaries  
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of the output image might still be less deconvolved in case they 
map to areas in the input views that are subject to the cosine 
blending function. However, those areas close to the boundaries 
in the input views typically contain only background.

In order to facilitate the choice of a reasonable number of 
overlapping data sets for a given acquisition, the Fiji19 plug-in 
offers the option to output an image containing the number 
of contributing views at every pixel in the deconvolved image 
(Supplementary Fig. 10e). This also gives hints on how to adjust 
the imaging strategy regarding the number of views, size of stacks 
and their overlap. Please note that for smaller or more trans-
parent specimens, data sets are usually completely overlapping  
(Fig. 3a,b,f,g and Supplementary Fig. 16).

Simulation of SPIM data sets. We simulate a 3D ground-truth 
data set that resembles a biological object such as an embryo 
or a spheroid (Fig. 2a). The simulated multiview microscope 
rotates the sample around the x axis, attenuates the signal, con-
volves the input, samples at lower axial resolution and creates 
the final sampled intensities using a Poisson process (Fig. 2b). 
Finally, the acquired 3D image is rotated back into the orienta-
tion of the ground-truth image, which corresponds to the task  
of multiview registration in real multiview data sets and results 
in the final input stacks for the multiview deconvolution  
(Fig. 2c). Computation time is measured until the maximal cross-
correlation to the ground truth is achieved. Note that manual 
stopping of the deconvolution at earlier stages can reduce noise 
in the deconvolved image and optimize computation time.

To simulate the biological object, we use ImgLib2 (ref. 20) to 
draw a 3D sphere consisting of many small 3D spheres that have 
random locations, size and intensity. We simulate at twice the 
resolution of the final ground-truth image and downsample the 
result to avoid artificial edges.

An initial rotation around the x axis orients the ground truth-
image so that the virtual microscope can perform an acquisition. 
However, every transformation of an image introduces artifacts 
owing to interpolation. Although on a real microscope this initial 
transformation is performed physically and thus does not intro-
duce imaging artifacts, it is required for the simulation. To avoid 
the situation where artifacts are present in only the simulated 
views and not the ground-truth image (Fig. 2a), the ground-truth 
image is also rotated by 15° around the rotation axis of the simu-
lated multiview microscope, i.e., all simulated input views are 
rotated by (n + 15)° around the x axis.

The signal degradation along the light sheet is simulated using 
a simple physical model of light attenuation21. With an initial 
amount of laser power (or number of photons), the sample will 
absorb a certain percentage of photons at each spatial location, 
depending on the absorption rate (δ = 0.01) and the probability 
density (intensity) of the ground-truth image (Fig. 2b).

To simulate excitation and emission PSFs as well as light-sheet 
thickness, we measured effective PSFs from fluorescent beads of a 
real multiview data set taken with the Zeiss SPIM prototype and a 
40×/0.8-NA water-dipping objective. The attenuated image is sub-
sequently convolved with a different PSF for each view (Fig. 2b).

To simulate the reduced axial resolution, we sampled every third 
slice in the axial (z) direction and every pixel in lateral direction (xy). 
This corresponds to the anisotropy of a typical multiview acqui-
sition (Supplementary Table 1). The sampling process for each  

pixel is an individual Poisson process, with the intensity of the 
convolved pixel being its average (Fig. 2b).

To align all simulated views, we first scaled them to an isotropic 
volume and then rotated them back into the original orientation 
of the ground-truth data (Fig. 2c). Linear interpolation was used 
for all transformations.

Nuclei­based registration of C. elegans. In order to achieve a 
good deconvolution result, the individual views must be registered 
with very high precision. To achieve that, we match fluorescent 
beads that are embedded into the agarose with subpixel accu-
racy14. However, in C. elegans during larval stages, the cuticle itself 
acts as a lens, refracting the light sheet, which results in a slight 
misalignment of data inside the specimen. We therefore apply a 
secondary alignment step, which identifies corresponding nuclei 
in between views using redundant geometric local descriptor  
matching, and from that estimate an affine transformation model 
for each view correcting for the refraction due to the cuticle. The 
algorithm works similarly to the bead-based registration14 and is 
implemented in Fiji19 as a plug-in called “descriptor-based series 
registration” (S.P., unpublished software).

Implementation details. The simulation of multiview data 
(Fig. 2) and the 3D rendering (Fig. 2a) are implemented in 
ImgLib2 (ref. 20). The source code for the simulation is avail-
able as Supplementary Software 1; links to the current source 
code hosted on GitHub are available in the “readme” file and in 
Supplementary Note 8.

The multiview deconvolution is implemented in Fiji19 using 
ImgLib2 (ref. 20). Performance-critical tasks are the convolutions 
with the PSFs or the compound kernels. They are implemented 
using Fourier convolutions, and an alternative implementation 
of Fourier convolution is provided for the GPU. Note that it is  
currently not possible to implement the entire pipeline on the 
GPU owing to the limited size of graphics card memory. All  
significant parts of the implementation including per-pixel opera-
tions, copy and paste of blocks and the fast Fourier transform  
are completely multithreaded to allow maximal execution  
performance on the CPU and GPU. The source code is available 
as Supplementary Software 2; links to the GitHub repository  
containing the current source code versions are listed in the 
“readme” file and in Supplementary Note 8. Please note that an 
updated version of the multiview deconvolution is already shipped 
within Fiji. To simply use the deconvolution, building the source 
code is not required; an updated Fiji19 is sufficient.

The GPU implementation based on CUDA alternatively executes  
the Fourier convolution on Nvidia hardware. The native code is 
called via Java Native Access. The source code and precompiled  
libraries for CUDA5.5 for Windows 64 bit and CUDA5.0 for 
Linux 64 bit are available as Supplementary Software 3. Note 
that for Windows the DLL has to be placed in the Fiji directory;  
for Linux, in a subdirectory called lib/linux64; and that the  
current version of the Nvidia CUDA driver needs to be installed 
on the system.

The native CUDA code is platform dependent. If the provided 
precompiled libraries do not work, make sure you have the current  
Nvidia CUDA driver (https://developer.nvidia.com/cuda-
downloads) installed and the Nvidia samples are working. If  
Fiji19 still does not recognize the Nvidia CUDA capable devices, 

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
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compile the CUDA code from source. You can use CMAKE, which 
is set up to compile the code platform independently. Alternatively,  
it can be compiled using the following command under Linux: 
nvcc convolution3Dfft.cu --compiler-options ‘-fPIC’ -shared -
lcudart -lcufft -I/opt/cuda5/include/ -L/opt/cuda5/lib64 -lcuda 
-o libConvolution3D fftCUDAlib.so

FIJI plug­ins. The multiview deconvolution is integrated  
into Fiji19 (http://fiji.sc/). Please make sure to update Fiji19 before 
running the multiview deconvolution. The typical workflow  
consists of three steps.

1. Run the bead-based registration on the data (http://fiji.sc/
SPIM_Bead_Registration).

2. Perform a simple average multiview fusion in order to define 
the correct bounding box on which the deconvolution should be 
performed (http://fiji.sc/Multi-View_Fusion).

3. Run the multiview deconvolution using either the GPU 
or the CPU implementation (http://fiji.sc/Multi-View_
Deconvolution).

Detailed instructions for the individual plug-ins can be found 
on their respective Fiji wiki pages, summarized on this page 
http://fiji.sc/SPIM_Registration. Note that owing to the script-
ing capabilities of Fiji, the workflow can be automated and exe-
cuted on a cluster (http://fiji.sc/SPIM_Registration_on_cluster).  
An example data set is available for download: http://fiji.sc/SPIM_
Registration#Downloading_example_dataset.

21. Uddin, M.S., Lee, H.K., Preibisch, S. & Tomancak, P. Microsc. Microanal. 
�7, 607–613 (2011).
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